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Small Disturbance Euler Equations: Ef� cient and Accurate
Tool for Unsteady Load Prediction

Erich Kreiselmaier¤ and Boris Laschka†

Technische Universität München, 85747 Garching, Germany

It is well known that the time-accurate solutions of the unsteady Euler equations are a reasonable but com-
putationally expensive and time-consuming approach. Concerning aeroelastic applications, there is a need for
ef� cient and accurate tools to determine the unsteady aerodynamic loads due to a variety of parameters. A numer-
ical method based on an alternative approach, namely, on the solution of the small disturbance Euler equations
(SDEu), is presented. These equations provide the following advantages: The unsteady problem is reduced to a
steady-state problem for the perturbation part. The unsteady loads can be evaluated directly. Assuming harmonic
behavior of unsteadiness, the use of well-proven modal methods in aeroelastic analysis is supported. By application
of this method, a substantial reduction of computational time is achieved. Results are presented for several airfoils
and wings in pitching motion at subsonic, transonic, and supersonic Mach numbers. It is shown that for the most
critical region, namely, the transonic region, the SDEu provide an excellent and fast means for the prediction of
unsteady forces. The only remarkable differences between the nonlinearEuler solution and the SDEu solution can
be observed in the pressure distribution in the vicinity of a shock, which is shown to have negligible in� uence on
the integral contribution of the shock impulse to the generalized forces.

Nomenclature
A = Jacobian matrix (n direction)
c = speed of sound, ( c p / q )
ĉ = chord length
cL = lift coef� cient
cM = moment coef� cient (about xm )
cp = pressure coef� cient
ĉr = root chord length
ĉt = tip chord length
d = thickness
e = total energy per unit volume
F, G, H = � ux vector in n , g , and f directions
Im = imaginary part, normalized with the

amplitude a 1

J = Jacobian of coordinate transformation
k = nondimensionalfrequency
kred = reduced frequency, k / [ ( c )Ma 1 ]
L = matrix of the left eigenvectors of the Jacobian
Ma 1 = freestream Mach number
p = pressure
Q = conservative solution vector times J
q = conservative solution vector
R = matrix of the right eigenvectors of the Jacobian
Re = real part, normalized with the amplitude a 1

S = source term
s = half-span
U, V , W = contravariant velocities
U ¤ , V ¤ , W ¤ = contravariant velocities times J
u, v, w = velocity in x , y, and z directions
V = volume
x , y, z = Cartesian coordinates
xm = axis of reference
x p = pitching axis
a = angle of attack
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c = ratio of speci� c heats
d 1 = small value
AR = aspect ratio
K = diagonal matrix of the eigenvalues of

the Jacobian
k = taper ratio
n , g , f = curvilinear coordinates
q = density
s = nondimensional time
s s = characteristic time,

p
( c )Ma 1 s

u = sweep angle
W = limiter function
W ¤ = entropy correction parameter

Subscripts

k, l, m = grid index system
0 = mean value
1 = amplitude

Superscripts

¯ = mean value
˜ = perturbationvalue
L = left value
R = right value

Introduction

T HE ability to predict unsteady loads for aeroelastic calcula-
tions in an accurate and economicway is highly sought after in

the aircraft industry. Modern computational � uid dynamics (CFD)
codes that time accurately in advance the unsteadyEuler or Navier–
Stokes equations have been successfully applied in the process of
aircraft development to investigate complex aerodynamics.1,2 For
aeroelasticapplications,where a high number of parameters such as
different natural modes, angles of attack, Mach numbers, frequen-
cies, etc., must be investigated, such an approach is prohibitively
expensive. In particular, simulations at low reduced frequenciesare
time consuming because, almost independent of the frequency, a
periodic state can only be achieved after calculating a number of
cycles.3

An alternativeapproach is the small disturbanceEuler equations
(SDEu). When applied to harmonicmotion, they yield a set of linear
variable coef� cient equationsfor the complex amplitudeof the � eld
quantities. With this approach, � rst, a steady state of reference is
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calculated using the nonlinear Euler equations. Second, the SDEu
describing the unsteady perturbation � ow are solved. In this con-
text, they are based on an explicit harmonic perturbation, yet the
examination of any other time dependency remains possible. The
unsteady problem is reduced to a formal steady-state problem for
the perturbation part. This leads to an ef� cient calculation for dif-
ferent frequenciesand natural modes, based on one steady solution
for a speci� c con� guration.Note that the nonlinear � ow physics are
contained in the steady reference solution and, therefore, are also
introduced into the solution for the perturbation � ow. Only � ows
where general changes in the � ow topology occur, such as occur-
ring and vanishing shocks during one cycle, defy being correctly
modeled using the SDEu.

Until the present, investigationsbasedon theSDEu havebeenper-
formed in the � eld of turbomachinery. Flutter and forced response
in two-dimensional cascade � ows were studied by Hall,4 Hall and
Crawley,5 Hall and Clark,6,7 and Holmes and Chuang.8 Quasi-three-
dimensional calculations have been performed by Zirkelbach9 and
Kahl and Klose,10 as well as three-dimensionalcalculationsby Hall
and Lorence11 and Hall et al.12

The methodsproposedby the previousinvestigatorsmainly differ
in the modeling of the shock with shock � tting or shock capturing
and the formulation of the airfoil boundary condition based on a
deforming or a � xed grid. For the � rst time, Lindquist,13 as well
as Lindquist and Giles,14 answered the crucial question, as to what
extent the SDEu equations can be applied to � ows with shocks.
Furthermore, their investigations of one-dimensional nozzle � ows
demonstrated the successful application of shock capturing. This
formed the basis for the calculation of three-dimensional � ows.
The correct modeling of the shock impulse with respect to posi-
tion and strength is necessary because its impact on unsteady loads
is of the same order as the unsteady pressure distribution in the
mainly linear region of the � ow� eld around the airfoil or wing. It
was shown that by the use of shock capturing the shock impulse is
smearedout and that thewidth and theheightof the impulsedepends
on the amount of dissipation in the numerical scheme. Neverthe-
less, its contribution to the unsteady loads is not in� uenced by this
effect.12,13

The formulation of the airfoil boundary condition seemed to be
a crucial issue for the quality of the results. By assuming that an
airfoil deforms with small amplitudes, it was reasonable to model
the moving airfoil with a modi� ed boundary condition and a � xed
grid.This boundaryconditionrequires the evaluationof the gradient
of the mean � ow velocity, which is dif� cult to compute accurately
and leads to signi� cant errors. Hence, this evaluationwas neglected
by some authors, though it is of great in� uence at the leading and
trailing edges.4,5,10,9 This de� ciency has lead to the development
of deforming grids and, as a consequence, to a more complicated
formulation of the linearized Euler equations.

The need for an improved method for aeroelastic calculations
in the transonic region suggests the use of the SDEu equations in
the � eld of aerodynamics of aircraft. Therefore, at the Lehrstuhl
für Fluidmechanik (FLM) of the Technische Universität München,
the development of a CFD code based on the SDEu equations was
initiated. Shock capturing is used due to its inherent simplicity for
the nonlinear Euler as well as for the SDEu equations. This is ac-
complished with � ux difference splitting according to Roe15 and
a modi� ed MUSCL extrapolation retaining the total variation di-
minishing (TVD) property. The concept of deforming grids was
employed to ensure an optimal evaluation of the airfoil boundary
condition.

First, investigations of several airfoils (NACA 0012, NACA
64A010, and 3% parabolic) in pitching motion at subsonic, tran-
sonic, and supersonic Mach numbers are performed. Results are
compared with those obtained by a nonlinear Euler method16 and,
in the subsonic case, with those of an unsteady panel method17 as
well. Second, the method is applied to three-dimensional� ows, even
coping with complicatedshock structures.This is done for the well-
known test case AGARD CT5 LANN (Lockheed-Georgia, Flight
Dynamics Laboratory, NASA-Langley Research Center and Na-
tional Aerospace Laboratory/NLR, see AGARD-R-702 Addendum

No. 1) wing in pitching motion, which has been used for validation
purposes in the framework of the European ComputationalAerody-
namics Research Project (ECARP).18

Theory
Euler Equations

In the present analysis, the unsteady compressible � ow around
airfoils and wings is modeled as three-dimensional, inviscid, and
adiabatic. For these conditions, the governing equations are the
three-dimensionalEuler equations and may be expressed in strong
conservation form and curvilinear coordinates for moving grids as

@Q
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+
@F
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+
@G
@g

+
@H
@f

= 0 (1)

where Q is thevectorof conservativevariablestimes J and F, G, and
H are the convective� uxes with respect to the n , g , and f directions:
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with U , V , and W as the contravariant velocities

U = n x u + n yv + n zw + n t , V = g x u + g y v + g zw + g t

W = f x u + f y v + f zw + f t (2)

If a perfect gas is assumed, the necessary closing condition is given
by the equation of state,

p = ( c ¡ 1) e ¡ 1
2
q (u2 + v2 + w 2) (3)

with c = cp / cv .
The metric terms are de� ned by

J n x = yg z f ¡ z g yf , J g x = z n yf ¡ yn z f

J n y = z g x f ¡ x g z f , J g y = x n z f ¡ z n x f

J n z = xg yf ¡ yg x f , J g z = x f yn ¡ y f x n

J f x = yn z g ¡ z n yg , n t = ¡ x s n x ¡ ys n y ¡ z s n z

J f y = xg z n ¡ z g x n , g t = ¡ x s g x ¡ ys g y ¡ z s g z

J f z = x n yg ¡ yn xg , f t = ¡ x s f x ¡ ys f y ¡ z s f z (4)

with

J = x n J n x + y n J n y + z n J n z

= x n (yg z f ¡ z g yf ) ¡ y n (x g z f ¡ z g x f ) + z n (x g yf ¡ yg x f )
(5)

On this basis, a consistent derivation of the SDEu equations that is
very close to the basic formulation (1) is possible. Note that in the
framework of a � nite volume scheme on structured grids, J is the
volume of a cell, whereas J n x , J n y , and J n z are the components of
the normal cell face vector with respect to the n direction and J n t is
the time rate of change of the volume due to the movement of the
cell face. At the far � eld, characteristic boundary conditions19 are
used, which are easily adapted to the SDEu.16
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SDEu Equations

For many aeroelastic calculations, the degree of unsteadinessof
the � ow is small compared to the mean � ow. Therefore, the � ow
can be decomposed into a steady mean � ow and an unsteady small
perturbation � ow. Furthermore, the source of unsteadiness is as-
sumed to be harmonic, leading to the following formulation for the
deforming grid:

x( n , g , f , s ) = x̄( n , g , f ) + x̃( n , g , f ) ei k s

y( n , g , f , s ) = ȳ( n , g , f ) + ỹ( n , g , f ) ei k s

z( n , g , f , s ) = z̄( n , g , f ) + z̃( n , g , f ) ei k s (6)

where x̃ , ỹ, and z̃ are the amplitude of grid motion about the steady
reference positions x̄ , ȳ, and z̄ and k is the nondimensional fre-
quency parameter with respect to the nondimensional time s . With
these assumptions, the metrics of steady state and the metrics of
the perturbation, undergoing harmonic variations as well, can be
derived. For the sake of brevity, this is shown only for the metrics
in n direction:

J n x = J n x + J n x ei k s , J n y = J n y + J n y ei k s

J n z = J n z + J n z eik s , J n t = J n t + J n t ei k s , J = J̄ + J̃ ei k s

(7)

Ũ ¤ = J n x ū + J n y v̄ + J n z w̄ + J n t

Ā =

0 J n x J n y J n z 0

J n x ¯u ¡ ūŪ ¤ Ū ¤ + (2 ¡ c )J n x ū J n y ū ¡ ( c ¡ 1)J n x v̄ J n z ū ¡ ( c ¡ 1) J n x w̄ ( c ¡ 1) J n x

J n y ¯u ¡ v̄Ū ¤ J n x v̄ ¡ ( c ¡ 1)J n y ū Ū ¤ + (2 ¡ c )J n y v̄ J n z v̄ ¡ ( c ¡ 1)J n yw̄ ( c ¡ 1) J n y

J n z ¯u ¡ w̄Ū ¤ J n x w̄ ¡ ( c ¡ 1)J n z ū J n yw̄ ¡ ( c ¡ 1)J n z v̄ Ū ¤ + (2 ¡ c )J n zw̄ ( c ¡ 1)J n z

(2 ¯u ¡ c ē / ¯q )Ū ¤ ( c ē / ¯q ¡ ¯u )J n x ¡ ( c ¡ 1)Ū ¤ ū ( c ē / ¯q ¡ ¯u )J n y ¡ ( c ¡ 1)Ū ¤ v̄ ( c ē / ¯q ¡ ¯u ) J n z ¡ ( c ¡ 1)Ū ¤ w̄ c Ū ¤

Ū ¤ = J n x ū + J n y v̄ + J n zw̄ , ¯u = [( c ¡ 1) / 2](ū2 + v̄2 + w̄2)

with

J n x = ȳg z̃ f ¡ z̄ g ỹf + ỹg z̄ f ¡ z̃ g ȳf

J n y = z̄ g x̃ f ¡ x̄ g z̃ f + z̃ g x̄ f ¡ x̃g z̄ f

J n z = x̄g ỹf ¡ ȳg x̃ f + x̃g ȳ f ¡ ỹg x̄ f

J n t = ¡ ik x̃ J n x ¡ ik ỹ J n y ¡ ikz̃ J n z

J̃ = x̄ n J n x + ȳn J n y + z̄ n J n z + x̃ n J n x + ỹn J n y + z̃ n J n z (8)

In a similar way, the unsteady � eld quantities are de� ned by the
superpositionof a steady and a perturbation state:

q( n , g , f ) = q̄( n , g , f ) + q̃( n , g , f ) ei k s (9)

Now the perturbation expressions of the grid, the metrics, and the
� eld quantities are substituted into the Euler equations in strong
conservation form and curvilinear coordinates (1). Collecting the
terms of zero order leads to the nonlinear steady-state Euler equa-
tions, equivalent to the steady version of Eq. (1) and all quantities

marked with an overbar. After some manipulation, collecting the
terms of � rst order results in the SDEu equations
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, F̃(1) =
@F
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J̃ ¯q

J̃ q u

J̃ q v

J̃ q w

J̃ ē

, F̃(2) =

¯q Ũ ¤

q uŨ ¤ + J n x p̄

q vŨ ¤ + J n y p̄

q wŨ ¤ + J n z p̄

Ũ ¤ (ē + p̄) ¡ J n t p̄

with

The � rst termof Eq. (10) is due to the perturbationamplitude q̃ being
assumed to be formally time dependent.Hence, one obtains a time-
dependent numerical scheme that is characterized by pseudotime
marching. Homogeneous terms in q̃ are marked with superscript
(1) and inhomogeneous terms with (2). It becomes evident from
the preceding equations that an unsteady solution evolves solely
from the unsteady metrics in the inhomogeneous terms by causing
an interaction of the real and imaginary parts of the SDEu. This
interactionis removedin thequasi-steadycase, that is, k =0. Finally,
the linearized form of the equation of state is given by

p̃ = ( c ¡ 1) ẽ ¡ 1
2 (2ū q u ¡ ū2 ˜q + 2v̄ q u ¡ v̄2 ˜q + 2w̄ q u ¡ w̄ 2 ˜q )

(11)

Numerical Procedure

First, a grid for the mean � ow, as well as a grid that represents the
perturbation due to a given deformation of the surface, is obtained
by employing an elliptic grid generator. Second, the mean � ow is
computed using a � nite volume approach relying on Roe’s � ux dif-
ference splitting.15 Second-order accuracy is achieved by MUSCL
extrapolation of the conservative variables, also ensuring the TVD
property. Time integration can be performed in an explicit or im-
plicit manner. For three-dimensionalcalculations, the lower–upper
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symmetric-successive-overrelaxation (LU-SSOR) scheme, � rst in-
troduced by Jameson and Turkel,20 is used.

With the exception of a source term, the SDEu (10) are formally
equivalent to the original Euler equations (1), resulting in a similar
derivation of the discretized equations. Therefore, the SDEu are
replaced by the following semidiscretized equation with the right-
hand side:

@Q̃(1)
k ,l,m

@s
= ¡ RHSk,l ,m

RHSk ,l ,m = F̃(1)

k + 1
2 ,l ,m

¡ F̃(1)

k ¡ 1
2 ,l ,m

+ G̃(1)

k,l + 1
2 ,m

¡ G̃(1)

k ,l ¡ 1
2 ,m

+ H̃(1)

k ,l ,m + 1
2

¡ H̃(1)

k,l ,m ¡ 1
2

¡ S̃(1)
k,l ,m ¡ S̃(2)

k ,l ,m

Q̃(1)
k ,l,m = V̄k,l ,m q̃k ,l ,m (12)

where S̃(1)
k ,l,m is the homogeneouspart and S̃(2)

k ,l ,m the inhomogeneous
part of the source term,

S̃(1)
k ,l ,m = ¡ Q̃(1)

k,l ,m ik

S̃(2)
k ,l ,m = ¡ Q̃(2)

k ,l,m ik + F̃(2)

k + 1
2 ,l,m

¡ F̃(2)

k ¡ 1
2 ,l ,m

+ G̃(2)

k ,l + 1
2 ,m

¡ G̃(2)

k,l ¡ 1
2 ,m

+ H̃(2)

k ,l,m + 1
2

¡ H̃(2)

k,l ,m ¡ 1
2

(13)

The main focus is on the consistent deduction of a linearized Roe
� ux difference splitting. The numerical � ux F̃(1)

k + 1/2 (for the sake of
clarity triple indexing is omitted) is given by

F̃(1)

k + 1
2

= 1
2

A(1)L

k + 1
2

+ R(1)

k + 1
2

¯K k + 1
2

L(1)

k + 1
2

q̃L
k + 1

2

+ A(1)R

k + 1
2

¡ R(1)

k + 1
2

¯K k + 1
2

L(1)

k + 1
2

q̃R
k + 1

2
(14)

where A(1)L / R
k + 1/ 2 are the Jacobian matrices evaluated with the steady-

state � eld quantities of the left/right side of the cell interface.How-
ever, the matrices of the left and right eigenvectors L(1)

k + 1/ 2 and
R(1)

k + 1/ 2, as well as the diagonal matrix ¯K k + 1/ 2, that contain the
eigenvaluesof the Jacobianmatrix Ā are evaluatedwith theRoe aver-
ages.To maintainconsistencyto the basicnonlinearEuler solver, the
eigenvaluesare correctedcorrespondingto Harten21 and Yee22 with
a continously differentiable approximation of the absolute value
function

W ¤ (z) =
j z j j z j ¸ d

(z2 + d 2) /2 d j z j < d (15)

where d is a parameter that is obtained by scaling the largest eigen-
value

d = d 1 ¢ ( j U j + c j r n j ) (16)

Furthermore MUSCL extrapolation is used to calculate the left and
right steady-state conservative � eld quantities q̄

q̄ L
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2
¯W L

k + 1
2
(q̄k ¡ q̄k ¡ 1)
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2
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2
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k + 1
2
(q̄k + 2 ¡ q̄k + 1) (17)
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2
= W r̄ L

k + 1
2
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k + 1

2
=

q̄k + 1 ¡ q̄k

q̄k ¡ q̄k ¡ 1
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k + 1

2
= W r̄ R

k + 1
2
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k + 1

2
=

q̄k + 1 ¡ q̄k

q̄k + 2 ¡ q̄k + 1

(18)

For all calculations, the Van Albada limiter

W = (r 2 + r ) / (r 2 + 1) (19)

is implemented. Linearizing the MUSCL extrapolation up to � rst
order leads to

q̃ L
k + 1
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= q̃k + 1

2
¯W L

k + 1
2
(q̃ k ¡ q̃k ¡ 1) + 1

2
˜W L

k + 1
2
(q̄k ¡ q̄k ¡ 1)
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= q̃k + 1 + 1

2
¯W R

k + 1
2
(q̃ k + 2 ¡ q̃ k + 1) + 1

2
˜W R

k + 1
2
(q̄k + 2 ¡ q̄k + 1)

(20)

includinga perturbationof the limiter.To maintain simplicityand to
allow the application of not continously differentiable limiters, the
perturbation of the limiter ˜W L / R is omitted. Nevertheless, a draw-
back in accuracy supposedlyappears only in regions of strong non-
linearity.

The source term S̃(2)
k,l ,m is computed once at the beginning of the

SDEu calculation from the known steady-statesolutionand the per-
turbation metrics of the prescribed grid motion. The numerical � ux
F̃(2)

k + 1/ 2 is

F̃(2)

k + 1
2

= 1
2 F̃(2) q̄L

k + 1
2

+ F̃(2) q̄R
k + 1

2

¡ R(2)

k + 1
2

˜K k + 1
2

L(2)

k + 1
2

q̄R
k + 1

2
¡ q̄L

k + 1
2

(21)

It is important to emphasize that the entropy correctionhas to be
linearized to apply it to the linearized eigenvalues in the diagonal
matrix j ˜K k + 1/ 2 j

˜W ¤ (z̄, z̃) =
(z̄ / j z̄ j )z̃ j z̄ j ¸ d

(z̄ / d )z̃ j z̄ j < d (22)

Disregarding this linearizationhas a strong impact on the quality of
the results.

Results and Discussion
Results for two- and three-dimensional cases are presented. For

two-dimensional � ow, a NACA 0012 airfoil is investigated in the
subsonicregion,a NACA 64A010airfoil in the transonicregion,and
a 3% parabolicairfoil in the supersonicregion, in eachcase perform-
ing a pitchingoscillation.In the three-dimensionalcase, the pitching
oscillation of the LANN wing is investigated for a transonic Mach
number. The results of SDEu are compared with the corresponding
nonlinear Euler method and, in the subsonic two-dimensionalcase,
with an unsteady panel method.17 In all � gures, the different meth-
ods are denoted as follows: FLM-SDEu corresponds to the SDEu
method, FLM-Eu to the nonlinear Euler method, and Potential to
the described panel method.

Pitching NACA 0012 Airfoil in the Subsonic Region

For the NACA 0012 airfoil (Fig. 1), � rst, the SDEu are applied
to a � ow that is governed by linear � ow physics. The motion of the
airfoil is given by

a ( s s) = a 0 + a 1 sin(kred ¢ s s ) (23)

and the simulation parameters are Ma 1 = 0.5, kred =0.0 ¡ 4.0,
x p / ĉ = 0.5, xm / ĉ =0.5, a 0 =0.0 deg, and a 1 =1.0 deg (Figs. 2

Fig. 1 C grid for the NACA 0012 airfoil.
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and 3). The Euler calculations were carried out on a fairly coarse
C-type grid with 180 cells in the wraparound, 30 cells in the nor-
mal direction, and a far-� eld distance of 20 chord lengths (Fig. 1).
Figure 2 shows the � rst harmonic of the unsteady lift and moment
coef� cient and Fig. 3 the corresponding � rst harmonic of the un-
steady pressuredistributionat the reduced frequencykred =2.5. The
conformity between the SDEu and the nonlinear Euler method is
excellent for the frequency range considered. With increased fre-

Fig. 2 NACA 0012:pitching oscillation,real and imaginarypart of the
� rst harmonicof cL and cM , symbols indicate the calculated frequencies.

Fig. 3 NACA 0012:pitchingoscillation, real and imaginarypart of the
� rst harmonic of cp , symbols indicate each second discretized point.

quency, a signi� cant difference between the Euler methods and the
potential method can be observed, caused by the dissimilar numer-
ical approaches, as becomes evident in the solution at the trailing
edge. Euler methods exhibit a certain amount of numerical viscos-
ity leading to an inherent formulation of the Kutta condition and a
smooth pressure distribution. In a potential method this has to be
done explicitly, leading to a strong recovery of pressure at the trail-
ing edge. Therefore, unsteady changes have a strong impact on the
whole pressure distribution.

Pitching NACA 64A010 Airfoil in the Transonic Region

To display the capabilitiesof the presented method in the critical
transonicregion, the well-knowntransonictest case NACA 64A010
airfoil in pitching motion23 with Ma1 =0.796, kred =0.05–0.606,
x p / ĉ = 0.25, xm / ĉ = 0.25, a 0 =0.0 deg, and a 1 =1.0 deg is pre-
sented (Figs. 4 and 5). Again a C-type grid with the same param-
eters as for the NACA 0012 airfoil is used. To adapt the grid to
the expected � ow, it is re� ned in the region of the shock motion.
Figure 4 shows the zero and � rst harmonic of the pressure distribu-
tion for kred = 0.404. Note that c0

p of the SDEu and the experiment
are steady-state values. Up to the shock region, the conditions for
linearization are excellent. The agreement of the numerical results
for c0

p with the experimental results is extremely good in the shock
region and downstream. Differences for c0

p are observed upstream
of the shock due to wind-tunnel wall effects.24

The � rst harmonic of the pressure distribution conforms very
well up to the shock region, where deviations between SDEu and
the nonlinear Euler code can be detected. In spite of differences in
the shape of the shock impulse to be found in the local pressure
distributions, the load contribution of the shock impulses can be
considered equal.

The � rst harmonic of the lift coef� cient in Fig. 5, as evaluated by
SDEu, conforms very well with the equivalent result of the nonlin-
ear code. This is remarkable, because shock movement covers a re-
gion of about 20% of the chord length depending on the frequency.
This veri� es the equivalent impact of shock impulses, originally
introduced by Lindquist and Giles.14 Therefore, shock capturing is



KREISELMAIER AND LASCHKA 775

Fig. 4 NACA 64A010:pitchingoscillation,zero harmonicand real and
imaginary part of the � rst harmonic of cp .

an appropriate approach even for the SDEu equations making tran-
sonic, three-dimensional applications possible where shock � tting
would be unfeasible.

Pitching 3% Parabolic Airfoil in the Supersonic Region

For the supersoniccase, theSDEu equationsare employedto a 3%
parabolic airfoil. The existence of a sharp leading edge and trailing
edge implies the use of an H-type grid. It is composedof two blocks
with 120 £ 30cells each and with 60 cellsonevery side of theairfoil.
The simulation parameters are given by Ma 1 = 1.4, kred =0.0–2.0,
x p / ĉ = 0.5, xm / ĉ =0.5, a 0 =0.0 deg, and a 1 = 1.0 deg (Fig. 6). In
this case, the shocks are � xed to the leading and trailing edge, re-
sulting in excellentconformity not only for the coef� cients (Fig. 6),
but also for the unsteady pressure distribution, shown in Fig. 7 for
kred =1.0.

Pitching LANN Wing in the Transonic Region

As an example for three-dimensional calculations the LANN
wing in transonic � ow is selected. Within the ECARP,18 the
AGARD CT5 test case is subject to extensive investigations
with different CFD codes. Geometric parameters of the wing
are given in Table 1. The simulation parameters are Ma 1 =0.82,

Table 1 Geometric parameters of the LANN wing

Parameter Value Parameter Value

ĉr 1.0 AR 7.92
s 2.77 k = ĉt / ĉr 0.4
d / ĉ 12% u 0.25 25 deg

Fig. 5 NACA 64A010: pitching oscillation, real and imaginary part of
the � rst harmonic of cL, symbols indicate the calculated frequencies.

Fig. 6 Airfoil 3% parabolic: pitching oscillation, real and imaginary
part of the � rst harmonicof cL, symbols indicate the calculated frequen-
cies.
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Fig. 7 Airfoil 3% parabolic: pitching oscillation, real and imaginary
part of the � rst harmonicof cp , symbolsindicate each second discretized
point.

Fig. 8 LANN wing: steady � ow contour lines of the steady cp distri-
bution ( D cp = 0.025) on the upper surface of the wing.

kred =0.0–1.0, xp / ĉr =0.621, xm / ĉ =0.25, a 0 = 0.6 deg, and
a 1 = 0.25 deg (Figs. 8 and 9).

The simulation is done on a CH-type grid with 160 £ 32 £ 40
cells, as suggested by ECARP. Lower and upper surfaces are dis-
cretized with 60 £ 28 cells. The upper side of the wing shows
a k -shock system (Fig. 8). Figure 9 shows the unsteady lift and
moment coef� cients, obtained with the SDEu and the nonlinear
Euler method, for the considered range of frequency. The agree-

Fig. 9 LANN wing: pitchingoscillation,real and imaginarypart of the
� rst harmonicof cL and cM , symbols indicate the calculated frequencies.

ment is excellent even for a complicated shock structure. This is
con� rmed by a more detailed analysisof the zero and � rst harmonic
of the pressure distributions for kred =0.204 at two different span-
wise sections y / s =32.5 and 65%, shown in Figs. 10 and 11. The
SDEu and the nonlinearFLM-Eu code are comparedwith the codes
of two ECARP partners, namely, the DLR Institute of Aeroelas-
ticity (DLR AE) and the DLR Institute of Design Aerodynamics
(DLR EA). The zero harmonic of the pressure coef� cient (Fig. 10)
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Fig. 10 LANN wing: pitching oscillation (Ma 1 = 0.82, kred = 0.204,
®0 = 0.6 deg, ®1 = 0.25 deg), zero harmonic of cp .

exhibits excellent agreement between FLM-SDEu and FLM-Eu at
the section y / s =32.5% even in the shock region. This can be
attributed to the recompressionoccurringover the two shocks, their
individual strength being weaker than the single shock at section
y / s =65.0%. At this section, a signi� cant difference occurs only
at the shock. This shows that with the exception of the shock re-
gion the � ow physics are linear. Because of different amounts of
numerical viscosity,a shock displacementof about 2% between the
various nonlinear Euler codes is observed at the � rst shock of the
inner section. Nevertheless, the overall agreement of the authors’
results with these results is very good. The � rst harmonics of the
pressure distribution of SDEu and nonlinear Euler (Fig. 11) con-
form very well. As already explained, in the two-dimensional case
the shock impulse exhibits some variation, but the contribution to
the unsteady load is equal. With respect to the results of DLR EA
and DLR AE, deviations occur other than just at the shocks. The
displacementof the shock impulse belongingto the shockat section
y / s =32.5% corresponds to the differences in the shock position,
as seen in Fig. 10. Figure 11 clearly shows that the variations in the
computational results due to numerical modeling are more signi� -
cant than the differences obtained with the SDEu or the nonlinear
Euler method.That means that the SDEu codeprovideshigh-quality
results and is suitable for the description of unsteady � ows, due to
the direct determination of the unsteady � ow part.

Note that the SDEu only needed 1
10 th of the time required by

the correspondingnonlinear Euler code to achieve the solution. For
the unsteady simulation with the nonlinear Euler code dual time
stepping was applied. Each cycle was subdivided into 160 physical
time steps; for three oscillation cycles about 42,000 iterations were
necessary. For the SDEu, code convergence is achieved after 8300
iterations. On a VPP 700, the steady solution for the LANN wing
was obtained within 90 CPU min. The unsteady solution requires
1300 CPU min using the nonlinear Euler code and 150 CPU min
using the SDEu code.

Fig. 11 LANN wing: pitching oscillation (Ma1 = 0.82, kred = 0.204,
®0 = 0.6 deg, ®1 = 0.25 deg), real and imaginary part of the � rst har-
monic of cp.
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Conclusions
A new consistent linearizationof the unsteady three-dimensional

nonlinear Euler equations is presented, leading to a set of linear
variable coef� cient equations, SDEu. The bene� ts of the SDEu are
as follows.

1) The harmonic behavior reduces the solution to a steady-state
problem for the amplitudes of the unsteady air forces.

2) The separationof steady and unsteady terms in the Euler equa-
tions directly yields the unsteady air forces instead of having to
extract them by Fourier analysis from a full Euler solution.

3) Any fast and convenient explicit or implicit solution method
for steady � ows may be applied.

4) The unsteady air forces may be used directly within the stan-
dard modal � utter calculations if wanted.

5) The computation time is reduced by an order of magnitude (in
our case by a factorof 10) saving costs and acceleratingthe analysis.

6) Comparisonof results from full Euler equationsand SDEu has
proven to be excellent.

7) The method is applicable to subsonic, supersonic, and, in par-
ticular, transonic � ow regimes.
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