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Small Disturbance Euler Equations: Efficient and Accurate
Tool for Unsteady Load Prediction

Erich Kreiselmaier* and Boris Laschka®
Technische Universitit Miinchen, 85747 Garching, Germany

It is well known that the time-accurate solutions of the unsteady Euler equations are a reasonable but com-
putationally expensive and time-consuming approach. Concerning aeroelastic applications, there is a need for
efficient and accurate tools to determine the unsteady aerodynamicloads due to a variety of parameters. A numer-
ical method based on an alternative approach, namely, on the solution of the small disturbance Euler equations
(SDEu), is presented. These equations provide the following advantages: The unsteady problem is reduced to a
steady-state problem for the perturbation part. The unsteady loads can be evaluated directly. Assuming harmonic
behavior of unsteadiness, the use of well-proven modal methods in aeroelastic analysis is supported. By application
of this method, a substantial reduction of computational time is achieved. Results are presented for several airfoils
and wings in pitching motion at subsonic, transonic, and supersonic Mach numbers. It is shown that for the most
critical region, namely, the transonic region, the SDEu provide an excellent and fast means for the prediction of
unsteady forces. The only remarkable differences between the nonlinear Euler solution and the SDEu solution can
be observed in the pressure distribution in the vicinity of a shock, which is shown to have negligible influence on
the integral contribution of the shock impulse to the generalized forces.

Nomenclature
Jacobian matrix (& direction)
speed of sound, \/(yp/p)
chord length
lift coefficient
moment coefficient (about x,,)
pressure coefficient
root chord length
tip chord length
thickness
total energy per unit volume
flux vectorin &, n, and & directions
imaginary part, normalized with the
amplitude oy
Jacobian of coordinate transformation
nondimensional frequenc
reduced frequency, k/[/(y)Ma ]
matrix of the left eigenvectors of the Jacobian
0 freestream Mach number
pressure
conservative solution vector times J
conservative solution vector
matrix of the right eigenvectors of the Jacobian
real part, normalized with the amplitude o,
source term
half-span
contravariant velocities
contravariant velocities times J
velocity in x, y, and z directions
volume
Cartesian coordinates
axis of reference
» pitching axis
angle of attack
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y = ratio of specific heats

& = small value

R = aspectratio

A = diagonal matrix of the eigenvalues of
the Jacobian

A = taper ratio

En ¢ = curvilinear coordinates

P = density

T = nondimensional time

Ty = characteristictime, +/(y)Mao ©

¢ = sweep angle

Y = limiter function

P entropy correction parameter

Subscripts

k,l,m = grid index system

0 = mean value

1 = amplitude

Superscripts

- = mean value

~ = perturbation value

L = leftvalue

R = right value

Introduction

HE ability to predict unsteady loads for aeroelastic calcula-

tions in an accurate and economic way is highly soughtafterin
the aircraft industry. Modern computational fluid dynamics (CFD)
codes that time accuratelyin advance the unsteady Euler or Navier-
Stokes equations have been successfully applied in the process of
aircraft development to investigate complex aerodynamics.!> For
aeroelasticapplications,where a high number of parameters such as
different natural modes, angles of attack, Mach numbers, frequen-
cies, etc., must be investigated, such an approach is prohibitively
expensive. In particular, simulations at low reduced frequencies are
time consuming because, almost independent of the frequency, a
periodic state can only be achieved after calculating a number of
cycles?

An alternative approachis the small disturbance Euler equations
(SDEu). When applied to harmonic motion, they yield a set of linear
variable coefficient equations for the complex amplitude of the field
quantities. With this approach, first, a steady state of reference is
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calculated using the nonlinear Euler equations. Second, the SDEu
describing the unsteady perturbation flow are solved. In this con-
text, they are based on an explicit harmonic perturbation, yet the
examination of any other time dependency remains possible. The
unsteady problem is reduced to a formal steady-state problem for
the perturbation part. This leads to an efficient calculation for dif-
ferent frequencies and natural modes, based on one steady solution
for a specific configuration. Note that the nonlinear flow physics are
contained in the steady reference solution and, therefore, are also
introduced into the solution for the perturbation flow. Only flows
where general changes in the flow topology occur, such as occur-
ring and vanishing shocks during one cycle, defy being correctly
modeled using the SDEu.

Until the present,investigationsbased on the SDEu have been per-
formed in the field of turbomachinery. Flutter and forced response
in two-dimensional cascade flows were studied by Hall,* Hall and
Crawley,’ Hall and Clark,%” and Holmes and Chuang.? Quasi-three-
dimensional calculations have been performed by Zirkelbach’ and
Kahl and Klose,'® as well as three-dimensionalcalculationsby Hall
and Lorence'! and Hall et al.'?

The methods proposedby the previousinvestigatorsmainly differ
in the modeling of the shock with shock fitting or shock capturing
and the formulation of the airfoil boundary condition based on a
deforming or a fixed grid. For the first time, Lindquist,"> as well
as Lindquist and Giles,'* answered the crucial question, as to what
extent the SDEu equations can be applied to flows with shocks.
Furthermore, their investigations of one-dimensional nozzle flows
demonstrated the successful application of shock capturing. This
formed the basis for the calculation of three-dimensional flows.
The correct modeling of the shock impulse with respect to posi-
tion and strength is necessary because its impact on unsteady loads
is of the same order as the unsteady pressure distribution in the
mainly linear region of the flowfield around the airfoil or wing. It
was shown that by the use of shock capturing the shock impulse is
smeared out and that the width and the height of the impulse depends
on the amount of dissipation in the numerical scheme. Neverthe-
less, its contribution to the unsteady loads is not influenced by this
effect.!>13

The formulation of the airfoil boundary condition seemed to be
a crucial issue for the quality of the results. By assuming that an
airfoil deforms with small amplitudes, it was reasonable to model
the moving airfoil with a modified boundary condition and a fixed
grid. This boundary conditionrequires the evaluationof the gradient
of the mean flow velocity, which is difficult to compute accurately
and leads to significant errors. Hence, this evaluation was neglected
by some authors, though it is of great influence at the leading and
trailing edges.*>!%° This deficiency has lead to the development
of deforming grids and, as a consequence, to a more complicated
formulation of the linearized Euler equations.

The need for an improved method for aeroelastic calculations
in the transonic region suggests the use of the SDEu equations in
the field of aerodynamics of aircraft. Therefore, at the Lehrstuhl
fiir Fluidmechanik (FLM) of the Technische Universitit Miinchen,
the development of a CFD code based on the SDEu equations was
initiated. Shock capturing is used due to its inherent simplicity for
the nonlinear Euler as well as for the SDEu equations. This is ac-
complished with flux difference splitting according to Roe'> and
a modified MUSCL extrapolation retaining the total variation di-
minishing (TVD) property. The concept of deforming grids was
employed to ensure an optimal evaluation of the airfoil boundary
condition.

First, investigations of several airfoils (NACA 0012, NACA
64A010, and 3% parabolic) in pitching motion at subsonic, tran-
sonic, and supersonic Mach numbers are performed. Results are
compared with those obtained by a nonlinear Euler method!® and,
in the subsonic case, with those of an unsteady panel method!” as
well. Second, the method is applied to three-dimensionalflows, even
coping with complicated shock structures. This is done for the well-
known test case AGARD CT5 LANN (Lockheed-Georgia, Flight
Dynamics Laboratory, NASA-Langley Research Center and Na-
tional Aerospace Laboratory/NLR, see AGARD-R-702 Addendum

No. 1) wing in pitching motion, which has been used for validation
purposesin the framework of the European Computational Aerody-
namics Research Project (ECARP).!®

Theory

Euler Equations

In the present analysis, the unsteady compressible flow around
airfoils and wings is modeled as three-dimensional, inviscid, and
adiabatic. For these conditions, the governing equations are the
three-dimensional Euler equations and may be expressed in strong
conservation form and curvilinear coordinates for moving grids as

30 oF 3G oH
=+ —+—+ =

ot | 9 on a_g_o )

where Q is the vectorof conservativevariablestimes J and F, G, and
H are the convectivefluxes with respectto the &, n, and & directions:
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with U, V, and W as the contravariant velocities
U=&u+&Ev+Ew+E, V=nu+nv+nw+n
W=Cu+fv+iw+¢ )

If a perfect gas is assumed, the necessary closing condition is given
by the equation of state,

p=(y - 1)[6—%p(u2+v2+w2)] (3)

with y =c,/c,.
The metric terms are defined by

J& = ynze = ye, I =2eye — Yeze
J& = zyx; — xy2¢, Iny =xezg — zexg
Jéz = XnY¢ = YnXes an =XoYe = YoXe

ng = Yeln — ZeYns é{ = _xréx - yréy - Zréz

JC:‘ = Xple — InXe, N = =X — Yelly — 27

Jc:z = XeYn — YeXy, G =—x.C — yré} - Zer “4)
with
J =x:JE + yJE + 2 &

= Xe(YnZe = 2g¥o) = Ye(XnZo = ZyXe) + 2e(Xy Ve — YuXe)
(5)

On this basis, a consistent derivation of the SDEu equations that is
very close to the basic formulation (1) is possible. Note that in the
framework of a finite volume scheme on structured grids, J is the
volume of a cell, whereas J&,, J&,, and J &, are the components of
the normal cell face vector with respectto the & directionand J & is
the time rate of change of the volume due to the movement of the
cell face. At the far field, characteristic boundary conditions'® are
used, which are easily adapted to the SDEu.'*
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SDEu Equations

For many aeroelastic calculations, the degree of unsteadiness of
the flow is small compared to the mean flow. Therefore, the flow
can be decomposed into a steady mean flow and an unsteady small
perturbation flow. Furthermore, the source of unsteadiness is as-
sumed to be harmonic, leading to the following formulation for the
deforming grid:

marked with an overbar. After some manipulation, collecting the
terms of first order results in the SDEu equations
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In a similar way, the unsteady field quantities are defined by the
superposition of a steady and a perturbation state:

q(&,n,6) =q(&, 1,0 +q(&,m, ) e ©)

Now the perturbation expressions of the grid, the metrics, and the
field quantities are substituted into the Euler equations in strong
conservation form and curvilinear coordinates (1). Collecting the
terms of zero order leads to the nonlinear steady-state Euler equa-
tions, equivalent to the steady version of Eq. (1) and all quantities

¢ =[(y = D/2]@@® + v* + w?)

The first term of Eq. (10) is due to the perturbationamplitude 4 being
assumed to be formally time dependent. Hence, one obtains a time-
dependent numerical scheme that is characterized by pseudotime
marching. Homogeneous terms in ¢ are marked with superscript
(1) and inhomogeneous terms with (2). It becomes evident from
the preceding equations that an unsteady solution evolves solely
from the unsteady metrics in the inhomogeneous terms by causing
an interaction of the real and imaginary parts of the SDEu. This
interactionis removedin the quasi-steadycase, thatis, k =0. Finally,
the linearized form of the equation of state is given by

Numerical Procedure

First, a grid for the mean flow, as well as a grid that represents the
perturbation due to a given deformation of the surface, is obtained
by employing an elliptic grid generator. Second, the mean flow is
computed using a finite volume approach relying on Roe’s flux dif-
ference splitting.!”> Second-order accuracy is achieved by MUSCL
extrapolation of the conservative variables, also ensuring the TVD
property. Time integration can be performed in an explicit or im-
plicit manner. For three-dimensional calculations, the lower-upper
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symmetric-successive-overelaxation (LU-SSOR) scheme, first in-
troduced by Jameson and Turkel 2 is used.

With the exception of a source term, the SDEu (10) are formally
equivalentto the original Euler equations (1), resulting in a similar
derivation of the discretized equations. Therefore, the SDEu are
replaced by the following semidiscretized equation with the right-
hand side:

20,1,
Tor K
_ _ D ~(1) ~(1)
RHS 1. _Fk+%4,/4,m Fk—%i,li,m + Gk,/+%¢m G&/—{m
() _ 50 e _ e
+Hk4,/4,m+% HkJA,m—% Siim = Skim
3D _y o
it = VermQesm (12)

where S‘(kl,)m is the homogeneous part and S‘(kz,)m the inhomogeneous
part of the source term,
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A(2) _ A0 5(2) )
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The main focus is on the consistent deduction of a linearized Roe

flux difference splitting. The numerical flux F (kli 1/» (for the sake of

clarity triple indexing is omitted) is given by

~R
L] o

where A(kliLll,g are the Jacobian matrices evaluated with the steady-
state field quantities of the left/right side of the cell interface. How-
ever, the matrices of the left and right eigenvectors L'} ,,, and
R(klim, as well as the diagonal matrix Ay +1/2, that contain the
eigenvaluesof the Jacobianmatrix A are evaluatedwith the Roe aver-
ages. To maintainconsistencyto the basicnonlinearEuler solver, the
eigenvaluesare corrected corresponding to Harten?! and Yee?? with
a continously differentiable approximation of the absolute value
function

|zl lz| =6

re= {(z2 +&)26 el <6 (15)

where 6 is a parameter that is obtained by scaling the largest eigen-
value
=35 -(IUl+clVeD (16)

Furthermore MUSCL extrapolationis used to calculate the left and
right steady-state conservative field quantities g
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For all calculations, the Van Albada limiter

W=+ + (19)

is implemented. Linearizing the MUSCL extrapolation up to first
order leads to

q~,f+% =qx + %‘i’:+%(q~k —qr-1) * %‘I’kﬂ%@k = Gi-1)
q~f+% =Gi+1 + é‘il,f+%(q~k+2 _q~k+1)+%~,f+%@k+2 = qr+1)

(20)

includinga perturbationof the limiter. To maintain simplicity and to
allow the application of not continously differentiable limiters, the
perturbation of the limiter W*/¥ is omitted. Nevertheless, a draw-
back in accuracy supposedly appears only in regions of strong non-
linearity. .

The source term S(kz,)m is computed once at the beginning of the
SDEu calculation from the known steady-state solution and the per-
ty(rzl;)ation metrics of the prescribed grid motion. The numerical flux
Fiiynis

2 _ 1|l gL 2 { =R
R =4 () ()

A @ (=R  _ ;L
Aoy (at oty @
It is important to emphasize that the entropy correction has to be

linearized to apply it to the linearized eigenvalues in the diagonal
matrix [ Ay 4 12

_ R(z)

1
k+ 3

G 3 @/Nzhz  lzZl =6
Y(Z,2) =7 . o= N

(z16)z 1zl < 8 (22)
Disregarding this linearizationhas a strong impact on the quality of
the results.

Results and Discussion

Results for two- and three-dimensional cases are presented. For
two-dimensional flow, a NACA 0012 airfoil is investigated in the
subsonicregion,a NACA 64A010airfoil in the transonicregion,and
a3% parabolicairfoilin the supersonicregion, in each case perform-
ing a pitchingoscillation.In the three-dimensionalcase, the pitching
oscillation of the LANN wing is investigated for a transonic Mach
number. The results of SDEu are compared with the corresponding
nonlinear Euler method and, in the subsonic two-dimensional case,
with an unsteady panel method.!” In all figures, the different meth-
ods are denoted as follows: FLM-SDEu corresponds to the SDEu
method, FLM-Eu to the nonlinear Euler method, and Potential to
the described panel method.

Pitching NACA 0012 Airfoil in the Subsonic Region

For the NACA 0012 airfoil (Fig. 1), first, the SDEu are applied
to a flow that is governed by linear flow physics. The motion of the
airfoil is given by

a(Ts) =0t o Sin(kred - Ts) (23)

and the simulation parameters are Ma, =0.5, kg =0.0 — 4.0,
x,/¢=0.5, x,/¢=0.5, ay=0.0 deg, and a; =1.0 deg (Figs. 2

20
10k SEs
' ~ =

> 0 | =
0 b g5
1 s
-20 -| PR TR T N N ST ST N (T TR S SNV SN ST S S N
20 10 0 10 20

X
Fig. 1 C grid for the NACA 0012 airfoil.
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and 3). The Euler calculations were carried out on a fairly coarse
C-type grid with 180 cells in the wraparound, 30 cells in the nor-
mal direction, and a far-field distance of 20 chord lengths (Fig. 1).
Figure 2 shows the first harmonic of the unsteady lift and moment
coefficient and Fig. 3 the corresponding first harmonic of the un-
steady pressure distributionat the reduced frequency k,.s =2.5. The
conformity between the SDEu and the nonlinear Euler method is
excellent for the frequency range considered. With increased fre-

10
| | —0O—— FLM-SDEu
~~0O-~- FLM-Eu
------ A-.-- Potential
8
i
-
[5}
[
19
6
45 1 — 3 4
kred
br— A
2
-l
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E
o
FLM-SDEu
= =0=-- FLM-Eu
...... Ao Potential
ol
20 1 2 3 4
Keea
3
—{+— FLM-SDEu
- =0O= = FLM-Eu
...... .- Potential
-=
[3]
Q
24
L L L
00 1 2 3 4
k

=i o FLM-SDEuU
- -0-~ FLM-Eu N
------ A--.-.- Potential

Fig. 2 NACA 0012: pitching oscillation, real and imaginary part of the
first harmonicof ¢;, and c)7, symbolsindicate the calculated frequencies.

lower side

——0—— FLM-SDEu
-——0—— FLM-Eu
——~—— Potential

-10F upper side

L -
0 0.25 0.5 0.75

-15 TR SR B TR ERNTI B S RN
X

151

104 lower side

—3—— FLM-SDEu
—0—— FLM-Eu
——A—— Potential

I S S T RO SIS N A SO SO R (N R T S
_150 0.25 0.5 0.75 1

Fig. 3 NACA 0012: pitching oscillation, real and imaginary part of the
first harmonic of c,, symbols indicate each second discretized point.

quency, a significant difference between the Euler methods and the
potential method can be observed, caused by the dissimilar numer-
ical approaches, as becomes evident in the solution at the trailing
edge. Euler methods exhibit a certain amount of numerical viscos-
ity leading to an inherent formulation of the Kutta condition and a
smooth pressure distribution. In a potential method this has to be
done explicitly, leading to a strong recovery of pressure at the trail-
ing edge. Therefore, unsteady changes have a strong impact on the
whole pressure distribution.

Pitching NACA 64A010 Airfoil in the Transonic Region

To display the capabilities of the presented method in the critical
transonicregion, the well-known transonictest case NACA 64A010
airfoil in pitching motion* with Ma,, =0.796, k.. =0.05-0.606,
x,/¢=0.25, x,,/¢=0.25, ay =0.0 deg, and o, =1.0 deg is pre-
sented (Figs. 4 and 5). Again a C-type grid with the same param-
eters as for the NACA 0012 airfoil is used. To adapt the grid to
the expected flow, it is refined in the region of the shock motion.
Figure 4 shows the zero and first harmonic of the pressure distribu-
tion for k,.g =0.404. Note that c?, of the SDEu and the experiment
are steady-state values. Up to the shock region, the conditions for
linearization are excellent. The agreement of the numerical results
for cg with the experimental results is extremely good in the shock
region and downstream. Differences for cg are observed upstream
of the shock due to wind-tunnel wall effects 2*

The first harmonic of the pressure distribution conforms very
well up to the shock region, where deviations between SDEu and
the nonlinear Euler code can be detected. In spite of differencesin
the shape of the shock impulse to be found in the local pressure
distributions, the load contribution of the shock impulses can be
considered equal.

The first harmonic of the lift coefficientin Fig. 5, as evaluated by
SDEu, conforms very well with the equivalent result of the nonlin-
ear code. This is remarkable, because shock movement covers a re-
gion of about 20% of the chord length depending on the frequency.
This verifies the equivalent impact of shock impulses, originally
introduced by Lindquist and Giles.'* Therefore, shock capturing is
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Fig. 4 NACA 64A010: pitching oscillation,zero harmonicand real and
imaginary part of the first harmonic of ¢,.

an appropriate approach even for the SDEu equations making tran-
sonic, three-dimensional applications possible where shock fitting
would be unfeasible.

Pitching 3% Parabolic Airfoil in the Supersonic Region

For the supersoniccase, the SDEu equationsare employedto a 3%
parabolic airfoil. The existence of a sharp leading edge and trailing
edge implies the use of an H-type grid. It is composed of two blocks
with 120 X 30cells each and with 60 cells on every side of the airfoil.
The simulation parameters are given by Ma,, = 1.4, k,.,q =0.0-2.0,
x,/¢=0.5,x,/¢=0.5, ay =0.0 deg, and a; = 1.0 deg (Fig. 6). In
this case, the shocks are fixed to the leading and trailing edge, re-
sulting in excellent conformity not only for the coefficients (Fig. 6),
but also for the unsteady pressure distribution, shown in Fig. 7 for
krcd =1.0.

Pitching LANN Wing in the Transonic Region

As an example for three-dimensional calculations the LANN
wing in transonic flow is selected. Within the ECARP," the
AGARD CT5 test case is subject to extensive investigations
with different CFD codes. Geometric parameters of the wing
are given in Table 1. The simulation parameters are Ma,, =0.82,

Table1 Geometric parameters of the LANN wing

Parameter Value Parameter Value
ér 1.0 R 7.92
s 2.77 A=¢/é, 0.4
dlé 12% $0.25 25 deg
12
1 —— FLM-SDEu
10+ ' --0-- FLM-Eu
Fay A Experiment
-~
o 8
[
6 -
45 0.8
0
B
-o_a il
£
I e FLM-SDEu
61 - -0-- FLM-Eu
N PASIERS Experiment
_8"‘,|,‘,.|..‘.l..,.
0 0.2 0.4 0.6 0.8

K,

red

Fig. 5 NACA 64A010: pitching oscillation, real and imaginary part of
the first harmonic of ¢y, symbols indicate the calculated frequencies.

—3— FLM-SDEu
~=0=-~ FLM-Eu

—— FLM-SDEu
| -=0=~- FLM-Eu

1 I n L 1 L L L I 1 L I L L 1 L L L
25 0.5 1 15 2

k,

red

Fig. 6 Airfoil 3% parabolic: pitching oscillation, real and imaginary
part of the first harmonicof ¢, , symbols indicate the calculated frequen-
cies.
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0 0.25 0.5 0.75 1
X
3r
2t
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= f
E oF
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2F — O FLM-SDEu
: — o FLM-Eu
_3' ] L L1 I -
0 0.25 0.5 0.75 1
X

Fig. 7 Airfoil 3% parabolic: pitching oscillation, real and imaginary
part of the first harmonicof ¢, , symbolsindicate each second discretized
point.
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Fig. 8 LANN wing: steady flow contour lines of the steady c, distri-
bution (A ¢, = 0.025) on the upper surface of the wing.

kg =0.0-1.0, x,/¢, =0.621, x,,/¢=0.25, ay=0.6 deg, and
oy =0.25 deg (Figs. 8 and 9).

The simulation is done on a CH-type grid with 160 X32 X40
cells, as suggested by ECARP. Lower and upper surfaces are dis-
cretized with 60 X28 cells. The upper side of the wing shows
a A-shock system (Fig. 8). Figure 9 shows the unsteady lift and
moment coefficients, obtained with the SDEu and the nonlinear
Euler method, for the considered range of frequency. The agree-
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Fig. 9 LANN wing: pitching oscillation, real and imaginary part of the
first harmonicof¢;, and 7, symbolsindicate the calculated frequencies.

ment is excellent even for a complicated shock structure. This is
confirmed by a more detailed analysis of the zero and firstharmonic
of the pressure distributions for k.4 =0.204 at two different span-
wise sections y/s =32.5 and 65%, shown in Figs. 10 and 11. The
SDEu and the nonlinear FLM-Eu code are compared with the codes
of two ECARP partners, namely, the DLR Institute of Aeroelas-
ticity (DLR AE) and the DLR Institute of Design Aerodynamics
(DLR EA). The zero harmonic of the pressure coefficient (Fig. 10)
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Fig. 10 LANN wing: pitching oscillation (Mas = 0.82, kyeq = 0.204,
ag = 0.6 deg, oy = 0.25 deg), zero harmonic of c,,.

exhibits excellent agreement between FLM-SDEu and FLM-Eu at
the section y/s =32.5% even in the shock region. This can be
attributed to the recompressionoccurringover the two shocks, their
individual strength being weaker than the single shock at section
y/s =65.0%. At this section, a significant difference occurs only
at the shock. This shows that with the exception of the shock re-
gion the flow physics are linear. Because of different amounts of
numerical viscosity, a shock displacementof about 2% between the
various nonlinear Euler codes is observed at the first shock of the
inner section. Nevertheless, the overall agreement of the authors’
results with these results is very good. The first harmonics of the
pressure distribution of SDEu and nonlinear Euler (Fig. 11) con-
form very well. As already explained, in the two-dimensional case
the shock impulse exhibits some variation, but the contribution to
the unsteady load is equal. With respect to the results of DLR EA
and DLR AE, deviations occur other than just at the shocks. The
displacementof the shockimpulse belongingto the shock at section
y/s =32.5% corresponds to the differences in the shock position,
as seen in Fig. 10. Figure 11 clearly shows that the variationsin the
computational results due to numerical modeling are more signifi-
cant than the differences obtained with the SDEu or the nonlinear
Euler method. That means that the SDEu code provideshigh-quality
results and is suitable for the description of unsteady flows, due to
the direct determination of the unsteady flow part.

Note that the SDEu only needed ﬁth of the time required by
the corresponding nonlinear Euler code to achieve the solution. For
the unsteady simulation with the nonlinear Euler code dual time
stepping was applied. Each cycle was subdividedinto 160 physical
time steps; for three oscillation cycles about 42,000 iterations were
necessary. For the SDEu, code convergenceis achieved after 8300
iterations. On a VPP 700, the steady solution for the LANN wing
was obtained within 90 CPU min. The unsteady solution requires
1300 CPU min using the nonlinear Euler code and 150 CPU min
using the SDEu code.
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Fig. 11 LANN wing: pitching oscillation (Mac = 0.82, kyeq = 0.204,
ag = 0.6 deg, a; = 0.25 deg), real and imaginary part of the first har-
monic of ¢,.
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Conclusions

A new consistentlinearization of the unsteady three-dimensional
nonlinear Euler equations is presented, leading to a set of linear
variable coefficient equations, SDEu. The benefits of the SDEu are
as follows.

1) The harmonic behavior reduces the solution to a steady-state
problem for the amplitudes of the unsteady air forces.

2) The separation of steady and unsteady terms in the Euler equa-
tions directly yields the unsteady air forces instead of having to
extract them by Fourier analysis from a full Euler solution.

3) Any fast and convenient explicit or implicit solution method
for steady flows may be applied.

4) The unsteady air forces may be used directly within the stan-
dard modal flutter calculations if wanted.

5) The computation time is reduced by an order of magnitude (in
our case by a factorof 10) saving costs and accelerating the analysis.

6) Comparison of results from full Euler equations and SDEu has
proven to be excellent.

7) The method is applicable to subsonic, supersonic, and, in par-
ticular, transonic flow regimes.
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